top of page

Compare the Confidence Intervals' Accuracy between OLS and Bootstrap

Writer's picture: Karl 曹Karl 曹

Updated: May 23, 2022

Initial setting:

X belongs to a normal distribution, mean at 0 and select some variance sigma^2. Error term belongs to standard normal distributon. Coefficient beta is (1 1.5 -1.5 1.5 0.5), include the constant term for beta0 = 1. And from beta1 to beta4 are coefficients for X, X^2, X^3, X^4.


Now we set n = 1000 as original setting, and observe the performance of theoretical confidence interval and bootstrap precentile confidence interval of predicted Y value. Formula of theoretical confidence interval is given below.

WLOG: we calculate the 95% confidence interval by 2*Standard Error

I calculated the coverage probability of theoretical 95% confidence interval and bootstrap confidence interval, use B=100 for bootstrap and simulated 100 times then take the mean of coverage probability. Given the two cases that the error term is normal distributed and uniform distributed, and n = 1000 and n = 100


Theroy: We can try to change the distribution of error term and sample size, because as we know that the normal distribution of betas rely on either normal error term or big sample size. We either keep n = 1000, and change error term to a uniform distribution, or keep a normal error term, and change the sample size n to 100.


x-axis is for different X value and y-axis is the average coverage probability


We can see that when our x0 is smaller than -0.5, the 2SE CI performs better, which means that they are closer to 95%, and if we change our error term setting, theoretical CI outperforms bootstrap CI.


This may caused by the shape of our polynomial function, below is one of our simulation result, red points are f(x)_hat estimated by bootstrap, and blue lines are theoretical confidence interval, we can see that in range -1 to -0.5, theoretical CI is relatively narrow, which means at these range our function has less variation. Thus the 2SE formula works well.

However, when x0 is bigger than -0.5, bootstrap CI performs better, especially when we change to non-normal error term, see the dashed lines. This may be caused by relatively higher variation of our function (which means the variance of beta coefficients are high, leads to much wider 2SE CI), and in such case our bootstrap CI is more stable than 2SE CI. Thus even though n = 1000 in such case, our estimated regression coefficients are not asymptotically normal distributed, thus 2SE formula does not work.


If we keep the error term normally distributed, and we change our sample size n, we could get similar results as showed below:

x-axis is for different X value and y-axis is the average coverage probability



x-axis is for different X value and y-axis is the deviation of 95% and average coverage probability (0.95 - mean.c.p.) .


If we show 95% - Coverage.Prob, we can get the same results. It is just another type of illustration.

---------------------------------------------------------------------------------------------------------------------------


This figure shows the deviation of confidence interval length between theoretical confidence interval and bootstrap confidence interval given different value of X. Positive y-axis shows that in each case theoretical CI is longer than bootstrap CI, under 95% significant level. And for the same level CI, we prefer the shorter, thus, Bootstrap CI performs better, especially in non-normal error term sample compare to theoretical CI.



This figure shows the deviation of confidence interval length between theoretical confidence interval and bootstrap confidence interval given different value of X. Positive y-axis shows that in each case theoretical CI is longer than bootstrap CI, under 95% significant level. And for the same level CI, we prefer the shorter, thus, Bootstrap CI performs better, especially in smaller sample size compare to theoretical CI.


Above is between groups, now we inspect what happens within groups:

This figure is still about interval length, only change is y-axis as you can see.

We find that in smaller n case, both CIs become longer, but relatively theoretical CI becomes longer than Bootstrap's, which also shows in a smaller sample size, bootstrap confidence interval is more precise.

We also find that in non-normal error case, both CIs become longer, but relatively theoretical CI becomes longer than Bootstrap's, which also shows in a non-normal error case, bootstrap confidence interval is more precise.


Our experiment shows that when our target function varies not too big, although violate some assumptions about our distribution of regression coefficients, the 2SE confidence interval still works well. However, when our interested function has high variation, such as high polynomial functions at some interval, bootstrap CI gives us more robust estimated CI than theoretical 2SE CI, this feature is determined by the essence of bootstrap.


In addition, the normal assumed CI highly depends on some assumptions of beta distribution and sample size in linear regression. However for bootstrap, it provides somehow more stable result in terms of CI.


Finally we can summarize that, when we are not sure the distribution of estimated coefficient, or our estimated coefficients' distribution is much complex, or our estimated function has a high variance, then we prefer the more stable bootstrap CI.


---------------------------------------------------------------------------------------------------------------------------

R code:


#install.packages("boot")
library(boot)
rm(list=ls())
##############################################
### 1.a
n <- 1000
beta <- matrix(c(1,1.5,-1.5,1.5,0.5),c(5,1))
sigma <- 1.2
data.gen <- function(beta,sigma){
  e <- rnorm(n,0,1)
  X <- rnorm(n,0,sigma)
  constant <- rep(1,n)
  X <- cbind(constant,X,X^2,X^3,X^4)
  Y <- X%*%beta+e
  data <- data.frame(Y,X)
}
sim <- data.gen(beta,1.2)

library(sandwich)

boot.fn <- function(data,index){
  coef(lm(Y~.,data=sim,subset = index))
}
boot.result <- boot(sim,boot.fn,R=100)
boot.result <- boot.result$t
boot.result <- boot.result[,-2]
boot.result <- as.matrix(boot.result)
CI_data.boot <- matrix(NA,length(x0),100)
# rows for each x0; columns for 100 times resample
for (i in 1:length(x0)) {
  l <- matrix(c(1,x0[i],x0[i]^2,x0[i]^3,x0[i]^4),
              c(5,1))
  CI_data.boot[i,] <- t(boot.result%*%l)
}
## sort CI data 
for (i in 1:length(x0)) {
  CI_data.boot[i,] <- sort(CI_data.boot[i,])
}
## find corresponding critical value in bootstrap data 
# according to theoretical CI
##################################################

## now find naive CI in bootstrap data
CI_bootstrap <- matrix(NA,length(x0),2)
for (i in 1:length(x0)) {
  q <- unname(quantile(CI_data.boot[i,],
                       c(0.025,0.975)))
  CI_bootstrap[i,1] <- q[1]
  CI_bootstrap[i,2] <- q[2]
}
CI_bootstrap

plot(x0,CI_bootstrap[,1],col="red","l")
lines(x0,CI_bootstrap[,2],col="red")
lines(x0,CI[,1],col="blue")
lines(x0,CI[,2],col="blue")

plot(rep(x0[1],100),CI_data.boot[1,],col="red",
     ylim = c(-3,3),xlim = c(-1,1),
     main = "Bootstrap result & 2SE CI",pch=19)
for (i in 2:length(x0)) {
  points(rep(x0[i],100),CI_data.boot[i,],col="red")
}
lines(x0,CI[,1],col="blue")
lines(x0,CI[,2],col="blue")

set.seed(527)
n <- 1000
beta <- matrix(c(1,1.5,-1.5,1.5,0.5),c(5,1))
sigma <- 1.2
x0 <- seq(-1,1,0.1)
S <- 100 # simulation times
## for simplicity, we create some functions

# compute theoretical CI with 2SE
theoretical.CI_fun <- function(sim){
  f_hat <- lm(Y~.-1,data=sim)
  C_hat <- vcovHC(f_hat)
  CI <- matrix(NA,length(x0),2)
  Y_hat <- c()
  coe <- as.matrix(coef(f_hat),c(5,1))
  for (i in 1:length(x0)) {
    l <- matrix(c(1,x0[i],x0[i]^2,x0[i]^3,x0[i]^4),
                c(5,1))
    Y_hat[i] <- t(coe)%*%l
    var_f <- t(l)%*%C_hat%*%l
    se <- sqrt(var_f)
    CI[i,] <- c(Y_hat[i]-2*se,Y_hat[i]+2*se)
  }
  return(CI)
}
# compute bootstrap data
bootstrap.data_fun <- function(sim){
  boot.result <- boot(sim,boot.fn,R=100)
  boot.result <- boot.result$t
  boot.result <- boot.result[,-2]
  boot.result <- as.matrix(boot.result)
  CI_data.boot <- matrix(NA,length(x0),100)
  for (i in 1:length(x0)) {
    l <- matrix(c(1,x0[i],x0[i]^2,x0[i]^3,x0[i]^4),
                c(5,1))
    CI_data.boot[i,] <- t(boot.result%*%l)
  }
  return(CI_data.boot)
}

## compute bootstrap CI at 95%
CI_bootstrap_fun <- function(CI_data.boot){
  CI_bootstrap <- matrix(NA,length(x0),2)
  for (i in 1:length(x0)) {
    q <- unname(quantile(CI_data.boot[i,],
                         c(0.025,0.975)))
    CI_bootstrap[i,1] <- q[1]
    CI_bootstrap[i,2] <- q[2]
  }
  return(CI_bootstrap)
}

### all we need finally are stored in here
final_result <- matrix(NA,length(x0),8)
colnames(final_result) <- c("theo.CI.low","theo.CI.up",
                            "boot.CI.low","boot.CI.up","coverage.Prob.SE",
                            "coverage.Prob.boot","length.theo.CI","length.boot.CI")
frc1 <- matrix(NA,length(x0),S)
frc2 <- matrix(NA,length(x0),S)
frc3 <- matrix(NA,length(x0),S)
frc4 <- matrix(NA,length(x0),S)
frc7 <- matrix(NA,length(x0),S)
frc8 <- matrix(NA,length(x0),S)

for (i in 1:S) {
  sim <- data.gen(beta,1.2)
  CI <- theoretical.CI_fun(sim)
  frc1[,i] <- CI[,1]
  frc2[,i] <- CI[,2]
  CI_data.boot <- bootstrap.data_fun(sim)
  CI_bootstrap <- CI_bootstrap_fun(CI_data.boot)
  frc3[,i] <- CI_bootstrap[,1]
  frc4[,i] <- CI_bootstrap[,2]
  frc7[,i] <- CI[,2]-CI[,1]
  frc8[,i] <- CI_bootstrap[,2]-CI_bootstrap[,1]
}
# stupid value given procedure
for (i in 1:length(x0)) {
  final_result[i,1] <- mean(frc1[i,])
}
for (i in 1:length(x0)) {
  final_result[i,2] <- mean(frc2[i,])
}
for (i in 1:length(x0)) {
  final_result[i,3] <- mean(frc3[i,])
}
for (i in 1:length(x0)) {
  final_result[i,4] <- mean(frc4[i,])
}
for (i in 1:length(x0)) {
  final_result[i,7] <- mean(frc7[i,])
}
for (i in 1:length(x0)) {
  final_result[i,8] <- mean(frc8[i,])
}
y_true <- c()
for (i in 1:length(x0)) {
  l <- matrix(c(1,x0[i],x0[i]^2,x0[i]^3,x0[i]^4),
              c(5,1))
  y_true[i] <- t(beta)%*%l
}
c.p <- c()
c.p.boot <- c()
judge <- matrix(NA,length(x0),100)
judge2 <- matrix(NA,length(x0),100)
for (j in 1:length(x0)) {
  judge[j,] <- (y_true[j]>= frc1[j,]&
                  y_true[j]<= frc2[j,])
  judge2[j,] <- (y_true[j]>= frc3[j,]&
                   y_true[j]<= frc4[j,])
}
for (i in 1:length(x0)) {
  c.p[i] <- mean(judge[i,])
  c.p.boot[i] <- mean(judge2[i,]) 
}
final_result[,5] <- c.p
final_result[,6] <- c.p.boot
final_result
# final result shows that 2SE over estimate 95%CI
# change 2 to 1.96 will improve, but doesn't matter
# now let's change dgp to improve bootstrap

##
### what is a good CI?? 
# if we say good CI is which closer to real 1-alpha
# then less n 
# non-normal error term
# and if we think the shorter CI length, the better
# both above should hold
# change to hetroscho....error 
#n <- 1000
n <- 100
beta <- matrix(c(1,1.5,-1.5,1.5,0.5),c(5,1))
sigma <- 1.2
x0 <- seq(-1,1,0.1)
S <- 100 # simulation times
set.seed(527)
data.gen.v2 <- function(beta,sigma){
  #e <- runif(n,-sqrt(5),sqrt(5))
  e <- rnorm(n,0,1)
  X <- rnorm(n,0,sigma)
  constant <- rep(1,n)
  X <- cbind(constant,X,X^2,X^3,X^4)
  Y <- X%*%beta+e
  data <- data.frame(Y,X)
}

final_result1 <- matrix(NA,length(x0),8)
colnames(final_result1) <- c("theo.CI.low","theo.CI.up",
                             "boot.CI.low","boot.CI.up","coverage.Prob.SE",
                             "coverage.Prob.boot","length.theo.CI","length.boot.CI")
frc1 <- matrix(NA,length(x0),S)
frc2 <- matrix(NA,length(x0),S)
frc3 <- matrix(NA,length(x0),S)
frc4 <- matrix(NA,length(x0),S)
frc7 <- matrix(NA,length(x0),S)
frc8 <- matrix(NA,length(x0),S)
## this loop may have warning message, ignore it
for (i in 1:S) {
  sim <- data.gen.v2(beta,1.2)
  CI <- theoretical.CI_fun(sim)
  frc1[,i] <- CI[,1]
  frc2[,i] <- CI[,2]
  CI_data.boot <- bootstrap.data_fun(sim)
  CI_bootstrap <- CI_bootstrap_fun(CI_data.boot)
  frc3[,i] <- CI_bootstrap[,1]
  frc4[,i] <- CI_bootstrap[,2]
  frc7[,i] <- CI[,2]-CI[,1]
  frc8[,i] <- CI_bootstrap[,2]-CI_bootstrap[,1]
}
for (i in 1:length(x0)) {
  final_result1[i,1] <- mean(frc1[i,])
}
for (i in 1:length(x0)) {
  final_result1[i,2] <- mean(frc2[i,])
}
for (i in 1:length(x0)) {
  final_result1[i,3] <- mean(frc3[i,])
}
for (i in 1:length(x0)) {
  final_result1[i,4] <- mean(frc4[i,])
}
for (i in 1:length(x0)) {
  final_result1[i,7] <- mean(frc7[i,])
}
for (i in 1:length(x0)) {
  final_result1[i,8] <- mean(frc8[i,])
}
y_true <- c()
for (i in 1:length(x0)) {
  l <- matrix(c(1,x0[i],x0[i]^2,x0[i]^3,x0[i]^4),
              c(5,1))
  y_true[i] <- t(beta)%*%l
}
c.p <- c()
c.p.boot <- c()
judge <- matrix(NA,length(x0),100)
judge2 <- matrix(NA,length(x0),100)
for (j in 1:length(x0)) {
  judge[j,] <- (y_true[j]>= frc1[j,]&
                  y_true[j]<= frc2[j,])
  judge2[j,] <- (y_true[j]>= frc3[j,]&
                   y_true[j]<= frc4[j,])
}
for (i in 1:length(x0)) {
  c.p[i] <- mean(judge[i,])
  c.p.boot[i] <- mean(judge2[i,]) 
}
final_result1[,5] <- c.p
final_result1[,6] <- c.p.boot

################################################
# this is for small sample case
final_result2 <- matrix(NA,length(x0),8)
colnames(final_result2) <- c("theo.CI.low","theo.CI.up",
                             "boot.CI.low","boot.CI.up","coverage.Prob.SE",
                             "coverage.Prob.boot","length.theo.CI","length.boot.CI")
frc1 <- matrix(NA,length(x0),S)
frc2 <- matrix(NA,length(x0),S)
frc3 <- matrix(NA,length(x0),S)
frc4 <- matrix(NA,length(x0),S)
frc7 <- matrix(NA,length(x0),S)
frc8 <- matrix(NA,length(x0),S)
## this loop may have warning message, ignore it
for (i in 1:S) {
  sim <- data.gen.v2(beta,1.2)
  CI <- theoretical.CI_fun(sim)
  frc1[,i] <- CI[,1]
  frc2[,i] <- CI[,2]
  CI_data.boot <- bootstrap.data_fun(sim)
  CI_bootstrap <- CI_bootstrap_fun(CI_data.boot)
  frc3[,i] <- CI_bootstrap[,1]
  frc4[,i] <- CI_bootstrap[,2]
  frc7[,i] <- CI[,2]-CI[,1]
  frc8[,i] <- CI_bootstrap[,2]-CI_bootstrap[,1]
}
for (i in 1:length(x0)) {
  final_result2[i,1] <- mean(frc1[i,])
}
for (i in 1:length(x0)) {
  final_result2[i,2] <- mean(frc2[i,])
}
for (i in 1:length(x0)) {
  final_result2[i,3] <- mean(frc3[i,])
}
for (i in 1:length(x0)) {
  final_result2[i,4] <- mean(frc4[i,])
}
for (i in 1:length(x0)) {
  final_result2[i,7] <- mean(frc7[i,])
}
for (i in 1:length(x0)) {
  final_result2[i,8] <- mean(frc8[i,])
}
y_true <- c()
for (i in 1:length(x0)) {
  l <- matrix(c(1,x0[i],x0[i]^2,x0[i]^3,x0[i]^4),
              c(5,1))
  y_true[i] <- t(beta)%*%l
}
c.p <- c()
c.p.boot <- c()
judge <- matrix(NA,length(x0),100)
judge2 <- matrix(NA,length(x0),100)
for (j in 1:length(x0)) {
  judge[j,] <- (y_true[j]>= frc1[j,]&
                  y_true[j]<= frc2[j,])
  judge2[j,] <- (y_true[j]>= frc3[j,]&
                   y_true[j]<= frc4[j,])
}
for (i in 1:length(x0)) {
  c.p[i] <- mean(judge[i,])
  c.p.boot[i] <- mean(judge2[i,]) 
}
final_result2[,5] <- c.p
final_result2[,6] <- c.p.boot

#View(final_result1)
# the error term changed case
plot(x0,final_result[,5],"l",lwd=2,
     ylim=c(0.9,1),main = "Coverage Probability",
     ylab = "Coverage Probability")
lines(x0,final_result1[,5],lty=2,lwd=2)
lines(x0,final_result[,6],lty=1,col='red',lwd=2)
lines(x0,final_result1[,6],lty=2,col='red',lwd=2)
legend("bottomright",lty = c(1,2,1,2),lwd = c(2,2,2,2),
       col=c("black","black",'red','red'),
       legend = c("Normal.2SE","Uniform.2SE",
                  "Normal.boot","Uniform.boot"))
lines(x0,rep(0.95,length(x0)),col='blue',lwd=2)
# the small sample case 
plot(x0,final_result[,5],"l",lwd=2,
     ylim=c(0.9,1),main = "Coverage Probability",
     ylab = "Coverage Probability")
lines(x0,final_result2[,5],lty=2,lwd=2)
lines(x0,final_result[,6],lty=1,col='red',lwd=2)
lines(x0,final_result2[,6],lty=2,col='red',lwd=2)
legend("bottomright",lty = c(1,2,1,2),lwd = c(2,2,2,2),
       col=c("black","black",'red','red'),
       legend = c("1000.2SE","100.2SE",
                  "1000.boot","100.boot"))
lines(x0,rep(0.95,length(x0)),col='blue',lwd=2)

# plot the difference of coverage prob.
plot(x0,rep(0.95,length(x0))-final_result[,5],"l",lwd=2,
     ylim=c(-0.05,0.05),ylab = "95% - Coverage.Prob.",
     main = "Deviation of Coverage Prob. from 95%")
lines(x0,rep(0.95,length(x0))-final_result2[,5],lty=2,lwd=2)
lines(x0,rep(0.95,length(x0))-final_result[,6],lty=1,col='red',lwd=2)
lines(x0,rep(0.95,length(x0))-final_result2[,6],lty=2,col='red',lwd=2)
legend("topright",lty = c(1,2,1,2),lwd = c(2,2,2,2),
       col=c("black","black",'red','red'),
       legend = c("1000.2SE","100.2SE",
                  "1000.boot","100.boot"))
lines(x0,rep(0,length(x0)),col='blue',lwd=2)
# plot the deviation of interval length
# within groups
plot(x0,final_result[,7]-final_result1[,7],"l",
     ylim=c(-0.056,-0.045),
     main = "Advantage of Bootstrap CI over 2SE CI",
     ylab = "(Normal case) - (Uniform case)",lwd=2)
lines(x0,final_result[,8]-final_result1[,8],lty=2,lwd=2)
legend("topright",lty = 1:2,
       lwd = c(2,2),legend = c("Theoretical",
                               "Bootstrap"))

plot(x0,final_result[,7]-final_result2[,7],"l",
     ylim=c(-0.52,-0.35),
     main = "Advantage of Bootstrap CI over 2SE CI",
     ylab = "(n=1000) - (n=100)",lwd=2)
lines(x0,final_result[,8]-final_result2[,8],lty=2,lwd=2)
legend("topright",lwd = c(2,2),lty = 1:2,legend = c("Theoretical",
                                                    "Bootstrap"))


# between groups
plot(x0,final_result1[,7]-final_result1[,8],
     ylim = c(0.008,0.016),lwd=2,
     ylab = "2SE CI - Bootstrap CI",
     main = "Advantage of Bootstrap CI over 2SE CI","l")
# ylim for error setting
lines(x0,final_result[,7]-final_result[,8],lty=2,lwd=2)
legend("bottomleft",lty = 1:2,lwd = c(2,2),
       legend = c("Uniform Error","Normal Error"))


plot(x0,final_result2[,7]-final_result2[,8],lwd=2,
     ylim = c(0.01,0.07),ylab = "2SE CI - Bootstrap CI",
     main = "Advantage of Bootstrap CI over 2SE CI","l")
# ylim for small n setting
lines(x0,final_result[,7]-final_result[,8],lty=2,lwd=2)
legend("topleft",lwd = c(2,2),
       lty = 1:2,legend = c("n = 100","n = 1000"))



32 views0 comments

Recent Posts

See All

Comments


bottom of page